A class of infinite dimensional stochastic processes with unbounded diffusion

نویسنده

  • John Karlsson
چکیده

The aim of this work is to provide an introduction into the theory of infinite dimensional stochastic processes. The thesis contains the paper A class of infinite dimensional stochastic processes with unbounded diffusion written at Linköping University during 2012. The aim of that paper is to take results from the finite dimensional theory into the infinite dimensional case. This is done via the means of a coordinate representation. It is shown that for a certain kind of Dirichlet form with unbounded diffusion, we have properties such as closability, quasi-regularity, and existence of local first and second moment of the associated process. The starting chapters of this thesis contain the prerequisite theory for understanding the paper. It is my hope that any reader unfamiliar with the subject will find this thesis useful, as an introduction to the field of infinite dimensional processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A class of infinite dimensional stochastic processes with unbounded diffusion and its

This thesis consists of two papers which focuses on a particular diffusion type Dirichlet form E(F,G) = ∫ 〈ADF,DG〉H dν, whereA = ∑∞ i=1 λi〈Si, ·〉HSi. Here Si, i ∈ N, is the basis in the Cameron-Martin space, H, consisting of the Schauder functions, and ν denotes the Wiener measure. In Paper I, we let λi, i ∈ N, vary over the space of wiener trajectories in a way that the diffusion operator A is...

متن کامل

Khasminskii type averaging principle for stochastic reaction - diffusion equations ∗ Sandra Cerrai Dip . di Matematica per le Decisioni Università di Firenze Via C . Lombroso 6 / 17 I - 50134 Firenze , Italy

We prove that an averaging principle holds for a general class of stochastic reactiondiffusion systems, having unbounded multiplicative noise, in any space dimension. We show that the classical Khasminskii approach for systems with a finite number of degrees of freedom can be extended to infinite dimensional systems.

متن کامل

Concepts and Application of Three Dimensional Infinite Elements to Soil Structure-Interaction Problems

This study is concerned with the formulation of three dimensional mapped infinite elements with 1/r and 1/ decay types. These infinite elements are coupled with conventional finite elements and their application to some problems of soil structure interaction are discussed. The effeciency of the coupled finite-infinite elements formulation with respect to computational effort, data preparation a...

متن کامل

On time-dependent neutral stochastic evolution equations with a fractional Brownian motion and infinite delays

In this paper, we consider a class of time-dependent neutral stochastic evolution equations with the infinite delay and a fractional Brownian motion in a Hilbert space. We establish the existence and uniqueness of mild solutions for these equations under non-Lipschitz conditions with Lipschitz conditions being considered as a special case. An example is provided to illustrate the theory

متن کامل

A Certain Class of Laplace Transforms with Applications to Reaction and Reaction-diffusion Equations

A class of Laplace transforms is examined to show that particular cases of this class are associated with production-destruction and reaction-diffusion problems in physics, study of differences of independently distributed random variables and the concept of Laplacianness in statistics, α-Laplace and Mittag-Leffler stochastic processes, the concepts of infinite divisibility and geometric infini...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013